

(<http://ipindia.nic.in/index.htm>)

(<http://ipindia.nic.in/ind>)

Patent Search

Invention Title	A Smart Temperature Prediction System for DC Motors Based on the K-Nearest Neighbor Algorithm Using an Arduino Mega Interface
Publication Number	01/2026
Publication Date	02/01/2026
Publication Type	INA
Application Number	202541127908
Application Filing Date	17/12/2025
Priority Number	
Priority Country	
Priority Date	
Field Of Invention	COMPUTER SCIENCE
Classification (IPC)	G06N 20/00, G01R 31/34, G06N 3/08, G05B 13/04, H02P 29/024

Inventor

Name	Address	Country	Nationality
Kasireddy Idamakanti	Associate Professor, Dept. of EEE, Vishnu Institute of Technology, Bhimavaram	India	India
Reddi Khasim Shaik	Associate Professor, Dept. of EEE, Vishnu Institute of Technology, Bhimavaram	India	India
King Joshuva	UG Student, Dept. of EEE, Vishnu Institute of Technology, Bhimavaram	India	India

Applicant

Name	Address	Country	Nationality
Vishnu Institute of Technology, Bhimavaram	Vishnupur, Kovvada, Vishnu Institute of Technology, Bhimavaram	India	India

Abstract:

The present invention presents an intelligent solution for real-time temperature prediction of a DC motor by integrating a K-Nearest Neighbor (KNN)-based machine learning model with an Arduino Mega microcontroller. The system continuously monitors essential motor operating parameters, including voltage, current, and rotational speed, using these parameters as inputs to the trained KNN model to estimate the motor's internal temperature. By relying on data-driven prediction rather than direct sensing, the system avoids the need for a physical temperature sensor during normal operation. The KNN model is trained in an external computing environment using datasets collected under various load and speed conditions to capture realistic motor behavior. After training, the model is translated into Arduino-compatible code and deployed on the microcontroller for on-device inference. During operation, the Arduino evaluates the predicted temperature and initiates appropriate protective actions—such as reducing motor speed or shutting down the motor—when abnormal thermal conditions are detected. This predictive and proactive approach enhances thermal protection, improves motor reliability, extends lifespan, and provides a low-cost embedded machine learning solution well suited for industrial automation, automotive systems, robotics, and other applications requiring intelligent motor monitoring.

Complete Specification

Description: The invention presents an intelligent temperature prediction system for a DC motor using a Random Forest regression model deployed on an Arduino Mega microcontroller. The system is composed of the following key components:

1. DC Motor

A conventional DC motor whose thermal condition must be monitored and controlled during operation to prevent overheating and ensure long-term reliability.

2. Arduino Mega

A microcontroller that executes the embedded K-Nearest Neighbor model. It continuously acquires real-time operating data—such as voltage, current, and motor speed—and uses these inputs to estimate the internal temperature of the motor.

3. Motor Driver (e.g., L298N)

A driver module responsible for controlling the motor's speed and direction. It receives commands from the Arduino based on the predicted temperature values to ensure safe operation.

4. Random Forest Model (Trained Offline)

The machine learning model is developed and trained in an external computing environment using datasets that consist of motor voltage, current, rotational speed, and corresponding measured temperature values. After the training phase, the K-Nearest Neighbor (KNN) model is adapted into a form suitable for execution on the Arduino platform and uploaded to the microcontroller, where it performs real-time temperature prediction during motor operation.

5. Temperature Sensor (Used Only for Training)

[View Application Status](#)

[Terms & conditions](#) (<https://ipindia.gov.in/Home/Termsconditions>) [Privacy Policy](#) (<https://ipindia.gov.in/Home/Privacypolicy>)
[Copyright](#) (<https://ipindia.gov.in/Home/copyright>) [Hyperlinking Policy](#) (<https://ipindia.gov.in/Home/hyperlinkingpolicy>)
[Accessibility](#) (<https://ipindia.gov.in/Home/accessibility>) [Contact Us](#) (<https://ipindia.gov.in/Home/contactus>) [Help](#) (<https://ipindia.gov.in/Home/help>)
Content Owned, updated and maintained by Intellectual Property India, All Rights Reserved.

Page last updated on: 26/06/2019