

<http://ipindia.nic.in/ind>

(<http://ipindia.nic.in/index.htm>)

Patent Search

Invention Title	Machine-Learning Flood Prediction and Automated Rapid-Drainage System
Publication Number	01/2026
Publication Date	02/01/2026
Publication Type	INA
Application Number	202541126301
Application Filing Date	13/12/2025
Priority Number	
Priority Country	
Priority Date	
Field Of Invention	COMPUTER SCIENCE
Classification (IPC)	G06Q 50/02, G06N 20/00, G06Q 10/04, A01G 25/16, G06Q 10/06

Inventor

Name	Address	Country	Nat
Dr. Venkata Naga Rani Bandaru	Associate Professor, Dept. of Information Technology, Vishnu Institute of Technology, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh 534202	India	Indi
Shaik Suban Alisha	Associate Professor, Dept. of Civil Engineering, Vishnu Institute of Technology, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh 534202	India	Indi
Pathan Fayaz	Assistant Professor, Dept. of Civil Engineering, Vishnu Institute of Technology, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh 534202	India	Indi
Bhanupriya Kalidindi	Assistant Professor, Dept. Electrical Electronic Engineering, Vishnu Institute of Technology, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh 534202	India	Indi
Venu Gopal Atchana	Assistant Professor, Dept. of Information Technology, Vishnu Institute of Technology, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh 534202	India	Indi
Revanth Bokka	Assistant Professor, Dept. of Information Technology, Vishnu Institute of Technology, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh 534202	India	Indi
Phani Babu Komarapu	Assistant Professor, Dept. of Information Technology, Vishnu Institute of Technology, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh 534202	India	Indi
G Suresh Kumar	Assistant Professor, Dept. of Information Technology, Vishnu Institute of Technology, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh 534202	India	Indi
M Sandeep Kumar	Assistant Professor, Dept. of Information Technology, Vishnu Institute of Technology, Vishnupur, Bhimavaram, West Godavari District, Andhra Pradesh 534202	India	Indi

Applicant

Name	Address	Country	Nation
Vishnu Institute of Technology	Sri Vishnu Education Society, Kovvada Rd, Vishnupur, Kovvada, Andhra Pradesh 534202	India	India

Abstract:

The invention provides an integrated, intelligent system for predicting agricultural flooding and autonomously activating rapid-drainage mechanisms to prevent crop damage. The system employs an IoT environmental sensing network to collect real-time rainfall, soil-moisture, water-table, and field-condition data, supplemented by meteorological, hydrological, and geographical datasets. A Machine Learning Prediction Engine analyzes these inputs to generate accurate, plot-level flood-risk forecasts. A Control and Decision Unit interprets the predictive output and actuates pumps, valves, and drainage pipelines through an automated drainage-actuation module. A communication interface facilitates continuous data exchange, while cloud analytics and a user-alert interface support monitoring and model refinement. The system achieves proactive drainage, reduces crop risk, and provides a scalable, adaptive flood-mitigation solution for agriculture.

Complete Specification

Description:FIELD OF THE INVENTION

[001] The present invention relates to the domains of hydrological engineering, precision agriculture, environmental analytics, automated civil infrastructure, and machine learning-based disaster-mitigation systems. More particularly, the invention concerns an integrated flood-prediction and automated rapid-drainage infrastructure system designed to protect agricultural crops from flood damage by combining multi-source environmental data processing, machine learning-based hydrological forecasting, IoT enabled field monitoring, and intelligently actuated drainage mechanisms. The invention lies at the intersection of predictive environmental modeling, smart irrigation and drainage engineering, embedded sensor networks, and autonomous water-management systems, enabling proactive removal of rainwater from farmlands based on dynamically computed flood-risk predictions.

BACKGROUND OF THE INVENTION

[002] Agricultural lands in monsoon-prone and flood-susceptible regions frequently suffer irreversible crop loss due to sudden accumulation of rainwater, inadequate drainage, and the absence of real-time hydrological intelligence. Existing water-management and drainage infrastructures are predominantly manual, reactive, and dependent on human intervention. Such systems generally rely on fixed-capacity drains or rudimentary pumps that are activated only after significant waterlogging has occurred. Consequently, conventional systems fail to protect crops during rapid rainfall events, short-duration cloudbursts, or consecutive rainfall cycles where drainage

[View Application Status](#)[Terms & conditions](#) (<https://ipindia.gov.in/Home/Termsconditions>) [Privacy Policy](#) (<https://ipindia.gov.in/Home/Privacypolicy>)[Copyright](#) (<https://ipindia.gov.in/Home/copyright>) [Hyperlinking Policy](#) (<https://ipindia.gov.in/Home/hyperlinkingpolicy>)[Accessibility](#) (<https://ipindia.gov.in/Home/accessibility>) [Contact Us](#) (<https://ipindia.gov.in/Home/contactus>) [Help](#) (<https://ipindia.gov.in/Home/help>)

Content Owned, updated and maintained by Intellectual Property India, All Rights Reserved.

Page last updated on: 26/06/2019