

(Com to AE.AME,CE,CSE,IT,EIE,EEE,ME,ECE,Metal E, Min E, E Com E, Agri E, Chem E, PCE,PE) Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any FOUR Questions from Part-B

.....

		<u>PART –A</u>				
1.	a)	Find the rank of the matrix by reducing it to normal form $\begin{bmatrix} 3 & 2 & 1 & 5 \\ 2 & 3 & 4 & 6 \\ 3 & 5 & 6 & 10 \end{bmatrix}$.	(2M)			
	b)	What is the nature of the quadratic form $x^2+y^2+z^2-2xy$?	(2M)			
	c)	Write the physical significance of grad φ .	(2M)			
	d)	Find the area bounded by the upper half of the curve $r = a(1 - \cos \theta)$.	(2M)			
	e)	Prove that the work done in moving an object from P_1 to P_2 in a conservative	(2M)			
		force field \overline{F} is independent of the path joining the two points P_1 and P_2 .				
	f)	Show that $\int_{0}^{1} \left(\log \frac{1}{x} \right)^{m-1} dx = \Gamma(m)$.	(2M)			
	g)	Prove that the eigenvalues of A^{-1} are the reciprocals of the eigenvalues of A.	(2M)			
		PART -B				
2.	a)	Use Gauss Seidel method to solve $25x + 2y + 2z = 69$, $2x + 10y + z = 63$, $x + y + z = 43$.	(6M)			
	b)	Reduce the quadratic form $x^2 + 4y^2 + z^2 + 4xy + 6yz + 2zx$ to canonical form by linear transformation. Also find signature and rank of the quadratic form.	(8M)			
3.	a)	Find the natural frequencies and normal modes of vibrating system for which the mass matrix is $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$.	(7M)			
	b)	Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and find A^{-1} .	(7M)			
4.	a)	Trace the curve $x^3 + y^3 + 3axy = 0$.	(7M)			
	b)	Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} dy dx$ by changing into polar coordinates.	(7M)			
5.	a)	Express the integral $\int_{0}^{\infty} \frac{x^{c}}{c^{x}} dx$ in terms of Gamma function.	(7M)			
	b)	Show that $\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(x+a)^{m+n}} dx = \frac{B(m,n)}{a^{n}(1+a)^{m}}.$	(7M)			
		1 of 2				
		1 1 111 1 111				

6. a) Find the directional derivative of the function $f = x^2 - y^2 + 2z^2$ at the point (7M) P=(1,2,3) in the direction of the line PQ where Q = (5,0,4).

b) Prove that
$$\nabla \times \left(\frac{\overline{A} \times \overline{r}}{r^n}\right) = \frac{(2-n)\overline{A}}{r^n} + \frac{n(\overline{r}.\overline{A})\overline{r}}{r^{n+2}}.$$
 (7M)

7. If $\overline{F} = 4xz\overline{i} - y^2\overline{j} + yz\overline{k}$, evaluate $\int_{s} \overline{F}.\overline{n}ds$ where S is the surface of the cube (14M) bounded by x = 0, x = a, y = 0, y = a, z = 0, z = a.

(Com to AE.AME,CE,CSE,IT,EIE,EEE,ME,ECE,Metal E, Min E, E Com E, Agri E, Chem E, PCE,PE) Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any FOUR Questions from Part-B

.....

<u>PART –A</u>

1. a) Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -2 & 1 \\ 3 & 0 & 4 \end{bmatrix}$ by reducing it into echelon form. (2M)

b) What is the nature of the quadratic form
$$x^2-2y^2+z^2-2zy$$
? (2M)

c) Evaluate
$$\int_0^1 \sqrt[3]{\log \frac{1}{x} dx}$$
. (2M)

d) If
$$\lambda$$
 is eigenvalue of an orthogonal matrix, then show that $\frac{1}{\lambda}$ is also an eigenvalue. (2M)

e) Find the area bounded by the curves
$$y = x$$
 and $y = x^2$. (2M)

f) In what direction from the point (1,-1,3) the directional derivative of (2M) $\phi = 2xy + z^2$ is maximum? What is the magnitude of this maximum?

g) State Gauss divergence theorem. (2M)

PART -B

2. a) Solve by Gauss – Seidal method, the equations. (6M) 9x - 2y + z - t = 50 x - 7y + 3z + t = 20 -2x + 2y + 7z + 2t = 22 x + y - 2z + 6t = 18b) Verify Cayley-Hamilton theorem for A = $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 4 \end{bmatrix}$ and find A^{-1} . (8M)

3. a) Find the natural frequencies and normal modes of vibrating system for which the (7M) mass matrix is $\begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$.

2 1 3

b) Reduce the quadratic form $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$ to orthogonal (7M) transformation. Also find signature and rank of the quadratic form.

4. a) Trace the curve
$$y^{2}(a+x) = x^{2}(a-x)$$
. (7M)

b) By changing the order of integration, evaluate
$$\int_{0}^{1} \int_{1}^{2-x} xy dx dy.$$
 (7M)

1''1'1111''1'''111'1

	Code No: R161203	R16	SET - 2
5. a)	Evaluate $\int_{0}^{1} (8-x^3)^{1/3} dx$ using β and γ function	ns.	(7M)

b) Prove that
$$\Gamma\left(n+\frac{1}{2}\right) = \frac{\sqrt{\pi} \Gamma(2n+1)}{2^{2n} \Gamma(n+1)}$$
. (7M)

6. a) Find the directional derivative of $\phi = x^2 yz + 4xz^2$ at (1, -2, -1) in the direction of (7M) $2\overline{i} - \overline{j} - 2\overline{k}$.

b) Prove that
$$\operatorname{curl}(\overline{a} \times \overline{b}) = \overline{a} \operatorname{div} \overline{b} - \overline{b} \operatorname{div} \overline{a} + (\overline{b} \cdot \nabla) \overline{a} - (\overline{a} \cdot \nabla) \overline{b}.$$
 (7M)

7. Verify Stoke's theorem for $\overline{F} = (2x - y)\overline{i} - yz^2\overline{j} - y^2z\overline{k}$ over the upper half of (14M) surface of sphere $x^2 + y^2 + z^2 = 1$ bounded by the projection of the xy- plane.

(Com to AE.AME,CE,CSE,IT,EIE,EEE,ME,ECE,Metal E, Min E, E Com E, Agri E, Chem E, PCE,PE) Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any FOUR Questions from Part-B

.....

<u>PART –A</u>

1.	a)	Find the rank of the matrix by reducing it to normal form	1	3	4	1 2 10	(2M)
	b)	What is the nature of the quadratic form $-2x^2+2y^2-z^2-2xy^2$	L ?			-] (2M)

c) Find the complete area of the curve $a^2y^2 = x^3(2a - x)$. (2M)

d) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \sin^4 \theta \cos^2 \theta d\theta$$
. (2M)

- e) If λ is an eigenvalue of a nonsingular matrix A, then show that $\frac{|A|}{\lambda}$ is an eigenvalue of adj A. (2M)
- f) In what direction from the point (2, -1, 1) the directional derivative of (2M) $\phi = xy^2 + yz^3$ is maximum. What is the magnitude of this maximum?

(2M)

PART -B

- 2. a) Apply Guass Seidel method to solve the equations. (6M) 27x + 6y - z = 85 x + y + 54z = 110 6x + 15y + 2z = 72
 - b) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 10 & 1 & 1 \\ 1 & 10 & -1 \\ 1 & -2 & 10 \end{bmatrix}$ and find A^{-1} . (8M)

3. a) Find the natural frequencies and normal modes of vibrating system for which the (7M) mass matrix is $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$.

b) Reduce the quadratic form $4x^2 + 3y^2 + z^2 - 8xy - 6yz + 4zx$ to orthogonal (7M) transformation. Also find signature and rank of the quadratic form.

4. a) Find the perimeter of the loop of the curve $3ay^2 = x(x - a)^2$. (7M)

b) By changing the order of integration, evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy.$ (7M) 1 of 2

|"|'||||"|"|||'|

5. a) Evaluate $\int_{0}^{\infty} \frac{x^2}{1+x^4} dx$ using β and γ functions. (7M)

b) Show that
$$\Gamma(m)\Gamma\left(m+\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)$$
. (7M)

- 6. a) Find the angle between the normal to the surface $x^2 = yz$ at the points (1, 1, 1) (7M) and (2, 4, 1).
 - b) Find the constants a, b, c so that $(x+2y+az)\overline{i} + (bx-3y-z)\overline{j} + (4x+cy+2z)\overline{k}$ (7M) is irrotational. Also find the scalar potential.
- 7. Verify Green's theorem for $\int_C (xy + y^2)dx + (x^2)dy$ where C is the curve bounded (14M) by $y = x^2$ and y = x.

(Com to AE.AME,CE,CSE,IT,EIE,EEE,ME,ECE,Metal E, Min E, E Com E, Agri E, Chem E, PCE,PE) Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any FOUR Questions from Part-B

.....

<u>PART –A</u>

- 1. a) Find the rank of the matrix by reducing it to normal form $\begin{bmatrix} 2 & 6 & 8 & 2 \\ 1 & 3 & 4 & 1 \\ 3 & 5 & 6 & 10 \end{bmatrix}$ (2M)
 - b) What is the nature of the quadratic form $x^2-3y^2-z^2-zy$? (2M)
 - c) Prove that zero is an eigen value of a matrix if and only if it is singular. (2M)
 - d) In what direction from the point (1,-2,-1) the directional derivative of (2M) $\phi = x^2 yz + 4xz^2$ is maximum? What is the magnitude of the maximum?
 - e) Show that in an irrotational field, the value of a line integral between two points (2M)
 A and B will be independent of the path of integration and be equal to their potential difference.

f) Find the area bounded by the curves
$$y = x^2$$
 and $x = y^2$. (2M)

g) Show that
$$\int_{0}^{\infty} x^{n-1} e^{-kx} dx = \frac{\Gamma(n)}{k^{n}}$$
 (2M)

PART -B

2. a) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ and find A^{-1} . (6M)

b) Apply Guass – Seidel method to solve the equations 20x + y - 2z = 17, 3x + 20y - z = -18 2x - 3y + 20z = 25(8M)

3. a) Find the natural frequencies and normal modes of vibrating system for which the (7M) mass matrix is $\begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$.

b) Using Lagrange's reduction, transform
$$x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 8x_1x_3$$
. (7M)

4. a) Trace the curve
$$x^{2/3} + y^{2/3} = a^{2/3}$$
. (7M)

b) By changing the order of integration, evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{a^{2}-x^{2}-y^{2}} dy dx.$$
 (7M)

1 of 2

1"1"1111"1""111"1

(R16)

5. a) Show that
$$\Gamma(m)\Gamma\left(m+\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)$$
. (7M)
b) Express the integral $\tilde{f}x^{c}$, in terms of Gamma function (7M)

b) Express the integral
$$\int_{0}^{\infty} \frac{x^{c}}{c^{x}} dx$$
 in terms of Gamma function.

6. a) Find the angle of intersection of the spheres $x^2 + y^2 + z^2 = 39$ and $x^2 + y^2 + z^2 + (7M)$ 4x - 6y - 8z + 52 = 0 at the point (4, -3, 2).

- b) Prove that $grad(\overline{a}.\overline{b}) = (\overline{b}.\nabla)\overline{a} + (\overline{a}.\nabla)\overline{b} + \overline{b} \times curl\overline{a} + \overline{a} \times curl\overline{b}$. (7M)
- 7. Verify Gauss divergence theorem for $\overline{F} = x^2 \overline{i} + y^2 \overline{j} + z^2 \overline{k}$, over the cube formed (14M) by the planes x = 0, x = a, y = 0, y = b, z = 0, z = c.

I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2019 MATHEMATICS-III

(Com to AE.AME,CE,CSE,IT,EIE,EEE,ME,ECE,Metal E, Min E, E Com E, Agri E, Chem E, PCE,PE) Time: 3 hours Max. Marks: 70

Note: 1. Question paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any FOUR Questions from Part-B

PART -A

1.	a)	If $A = \begin{bmatrix} 123 \\ 246 \\ 4812 \end{bmatrix}$ then find rank of A.	(2M)					
	b)	If 1,2,3 are the Eigen values of matrix A , then Eigen values of A^{-1} .	(2M)					
	c)	What is the Nature of the quadratic form If 1 0,-1 are Eigen values of form the quadratic form.						
	d)	What is an asymptote of the curve?	(2M)					
	e)	Find $\beta(1,1)$	(2M)					
	f)	Prove that $3y^4z^2\overline{i} + z^3x^2\overline{j} - 3x^2y^2\overline{k}$ is a solenoidal vector.	(2M)					
	g)	State Gauss divergence theorem.	(2M)					
		<u>PART -B</u>						
2.	a)	Solve the equations $x + y - 2z + 3w = 0, x - 2y + z - w = 0, 4x + y - 5z + 8w = 0, 5x - 7y + 2z - w = 0.$	(7M)					
	b)	Solve the system of equations $x + y + z = 6$, $x-y+2z = 5$, $3x+y+z = 8$, $2x-2y+3z = 7$ by Gauss Jordan method.						
3.	a)	Verify Cayley -Hamilton theorem for A= $\begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ also find A ⁻¹	(7M)					
	b)	Find Rank index and signature of quadratic form $10x^2 + 2y^2 + 5z^2 - 4xy - 10xz + 6yz$ by orthogonal reduction.	(7M)					
4.	a)	Trace the curve $ay^2 = x^2(a - x)$	(7M)					
	b)	Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integration.	(7M)					

||"|"||"||"""|

5. a) Evaluate
$$\int_{0}^{\infty} x^{6} e^{-2x} dx$$
 (7M)

b) Show that
$$\int_{0}^{\infty} \frac{x^{a}}{a^{x}} dx = \frac{\Gamma(a+1)}{(\log a)^{a+1}} (a > 1)$$
 (7M)

- 6. a) if \overline{f} , ϕ be differentiable vector and scalar functions respectively, then prove that (7M) $\nabla .(\phi \overline{f}) = (\nabla \phi) . \overline{f} + \phi (\nabla . \overline{f})$ b) Prove that $\nabla \left(r \nabla \left(\frac{1}{r^3} \right) \right) = \frac{3}{r^4}$ (7M)
- 7. a) Apply Green's theorem to evaluate $\oint_C (2xy x^2)dx + (x^2 + y^2)dy$ where C is (7M) bounded by $y = x^2$ and $x = y^2$.
 - b) If $\vec{F} = 6z \vec{i} + (2x + y)\vec{j} x\vec{k}$, then Evaluate $\iint_S \vec{F} \cdot \hat{n} \, ds$ where S is the region bounded by the cylinder $x^2 + y^2 = 9$, x = 0, y = 0, z = 0 and y = 8. (7M)

(Com. to CE,CSE,IT,AE,AME,EIE,EEE,ME,ECE,Metal E,Min E,E Com E,Agri E,Chem E,PCE,PE)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)	
2. Answer ALL the question in Part-A	
3. Answer any FOUR Questions from Part-B	

PART -A

1.	a)	Write the working procedure to reduce the given matrix into Echelon form.	(2M)
	b)	Find the Eigen value of the matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}$.	(2M)
	c)	Find the point of the curve $r = a (1 + \cos \theta)$ where tangent coincide with the radius	(2M)
		vector.	
	d)	Evaluate $\int_{1}^{2} \int_{3}^{4} (xy + e^{y}) dx dy$	(2M)
	e)	Show that $\Gamma(n+1) = n\Gamma(n)$ for $n > 0$	(2M)
	f)	Find grad ϕ where $\phi = x^3 + y^3 + 3xyz$ at (1,1,-2)	(2M)

g) Find the work done in moving particle in the force field $\overline{F} = 3x^2 \overline{i} + \overline{j} + z\overline{k}$ along the (2M) straight line (0, 0, 0) to (2, 1, 3).

PART -B

2. a) Reduce the matrix
$$A = \begin{bmatrix} 3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \\ 1 & -2 & -3 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$
 in to normal form hence find the rank. (7M)

b) If consistent, solve the system of equations.

$$x + y + z + t = 4$$

$$x - z + 2t = 2$$

$$y + z - 3t = -1$$

$$x + 2y - z + t = 3.$$

3. a) Determine the diagonal matrix orthogonally similar to the matrix. (7M)

- $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$
- b) Find the Nature , index and signature of the quadratic form (7M) $10x^2 + 2y^2 + 5z^2 4xy 10xz + 6yz$

|"|"|||"|"|||||

4. a) By change of order of integration evaluate
$$\int_{0}^{a} \int_{x}^{a} (x^{2} + y^{2}) dy dx$$
 (7M)

b) Evaluate
$$\int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \int_{0}^{(a^2 - r^2)/a} r \, dr \, d\theta \, dz$$
(7M)

5. a) Evaluate
$$\int_{0}^{\infty} 3^{-4x^2} dx$$
 (7M)

b) Show that
$$\int_{0}^{\infty} \sin x^{2} dx = \int_{0}^{\infty} \cos x^{2} dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}$$
 (7M)

6. a) Show that
$$\overline{f} = r^n \left(\overline{a} \times \overline{r}\right)$$
 is solenoidal where $\overline{a} = a_1 \overline{\iota} + a_2 \overline{j} + a_3 \overline{k}$ and (7M)
 $\overline{r} = x\overline{\iota} + y\overline{j} + z\overline{k}$

b) Prove that
$$\nabla\left(r\nabla\left(\frac{1}{r^3}\right)\right) = \frac{3}{r^4}$$
 (7M)

7. a) Verify stoke's theorem for $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$ for the upper part of the sphere (7M) $x^2 + y^2 + z^2 = 1.$

b) Verify Green's theorem in the plane for $\oint_c (xy + y^2) dx + x^2 dy$. Where *c* is the (7M) closed curve of the region bounded by $y=x & y=x^2$

2 of 2

|"|"|||"|"|||'|

(R16)

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 MATHEMATICS-III

(Com. to CE,CSE,IT,AE,AME,EIE,EEE,ME,ECE,Metal E,Min E,E Com E,Agri E,Chem E,PCE,PE)

Time: 3 hours

Max. Marks: 70

(2M)

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Write the working procedure to reduce the given matrix into Normal form.

/		
b)	Write quadratic form $x^2 + 3y^2 + 3z^2 - 2yz$	(2M)
c)	Write the tangents at the origin of the curve $a^2y^2 = x^2(a^2 - x^2)$.	(2M)
	Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dx dy dz$	(2M)
e)	Prove that $\beta(m,n) = \int_{0}^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$	(2M)
f)	Find the maximum value of the directional derivative of $\phi = 2x^2 - y - z^4$ at	(2M)
	(2, -1, 1)	

g) Write Stoke's theorem. (2M)

PART -B

2. a) For what value of k the matrix A =
$$\begin{bmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{bmatrix}$$
 has rank 3. (7M)

b) Solve the following system of equations
$$4x + 11y - z = 33$$
 by using.
 $6x + 3y + 12z = 35$
(7M)

Gauss - Seidel method.

- 3. a) Determine the characteristic roots and the corresponding characteristic vectors of (7M) the matrix.
 - $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$
 - b) Find the Nature , index and signature of the quadratic form (7M) $4x^2+3y^2+z^2-8xy+4xz-6yz$

- 4. a) Trace the curve $r^2 = a^2 \cos 2\theta$ (7M)
 - b) Evaluate $\int \int (x^2 + y^2) dx dy$ over the area bounded by the Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (7M)

5. a) Evaluate
$$\int_{0}^{\infty} a^{-bx^{2}} dx \ b > 0, a > 1$$
 (7M)

b) Show that
$$\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$$
(7M)

- 6. a) Find the constants 'a' and 'b' such that the surfaces $5x^2-2yz-9x=0$ and $ax^2y+bz^3=4$ (7M) cuts orthogonally at (1,-1,2)
 - b) Show that the vector $(x^2 yz)\overline{i} + (y^2 zx)\overline{j} + (z^2 xy)\overline{k}$ is irrotational and find (7M) its scalar potential.
- 7. a) If $\tilde{f} = (3x^2 2z)\tilde{i} 4xy\tilde{j} 5x\tilde{k}$ Evaluate $\int_{V} Cur \bar{F} dv$, where v is volume bounded by (7M) the planes x = 0; y = 0; z = 0 and 3x + 2y 3z = 6.
 - b) Evaluate $\int_{c} \cos y \, dx + x(1 \sin y) \, dy$ over a closed curve c given by $x^2 + y^2 = 1$; z = 0 (7M) using Green's theorem.

2 of 2

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 MATHEMATICS-III

(Com. to CE,CSE,IT,AE,AME,EIE,EEE,ME,ECE,Metal E,Min E,E Com E,Agri E,Chem E,PCE,PE)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART –A

- 1. a) Write the working procedure to find the inverse of the given matrix by Jordan (2M) method.
 - b) Find the Eigen value of Adj A if the ' λ ' is the Eigen value of A. (2M)
 - c) Write the symmetry of the curve $y^2 (2a x) = x^3$ (2M)

d) Evaluate
$$\int_{0}^{3} \int_{-x}^{x} xy \, dx \, dy$$
 (2M)

- e) Find the value of $\beta\left(\frac{1}{2}, \frac{1}{2}\right)$ (2M)
- f) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the (2M) point (2, -1, 2).
- g) Write the physical interpretation of Gauss divergence theorem. (2M)

PART -B

- 2. a) Reduce the matrix to Echelon form and find its rank $\begin{bmatrix} 2 & -1 & 5 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$ (7M)
 - Solve the equations 2x + 10y + z = 12, x + y + 5z = 7. (7M)
- 3. a) Find the Natural frequencies and normal modes of vibrating system for which (7M) mass $M = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$ b) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$. Hence find A⁻¹ (7M)

|"|"|||"|"|||'|

b)

SET - 3

4. a) Find the volume of region bounded by the surface $z = x^2 + y^2$ and z = 2x. (7M)

b) Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2} - x^{2}}} \sqrt{x^{2} + y^{2}} \, dy \, dx$$
 by changing in to polar co-ordinates. (7M)

5. a) Show that
$$\int_{a}^{b} (x-a)^{m-1} (b-x)^{n-1} dx = (b-a)^{m+n-1} \beta(m,n)m > 0, n > 0$$
 (7M)

b) Evaluate
$$\int_{0}^{1} (x \log x)^{4} dx$$
 (7M)

6. a) Find the directional derivative of $\phi = xyz$ at (1,-1, 1) along the direction which (7M) makes equal angles with the positive direction of x, y, z axes

b) Prove that
$$\operatorname{div} \operatorname{curl} \overline{f} = 0$$
 (7M)

- 7. a) Verify Green's theorem for $\int_{c} (3x^2 8y^2)dx + (4y 6xy)dy$ where *c* is the boundary of (7M) the region enclosed by the lines. x = 0 y = 0 x + y = 1.
 - b) Find the flux of vector function $\overline{F} = (x 2z)\overline{i} (x + 3y)\overline{j} + (5x + y)\overline{k}$ through the upper (7M) side of the triangle ABC with vertices (1,0,0), (0,1,0), (0,0,1).

(Com. to CE,CSE,IT,AE,AME,EIE,EEE,ME,ECE,Metal E,Min E,E Com E,Agri E,Chem E,PCE,PE)

Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B PART –A [1 1 1] 1. a) Find the Rank of the matrix $\begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$ (2M)1 1 1 b) Prove the AB and BA has same Eigen values. (2M) c) Write the Asymptote of the curve $\mathbf{y} = \frac{x^2 + 1}{x^2 - 1}$ (2M)d) Evaluate $\int_{0}^{3} \int_{1}^{2} xy (x + y) dx dy$ (2M) e) Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ (2M) Show that $\nabla(r^2) = 2\overline{r}$ f) (2M)g) Write Green's theorem. (2M)PART -B 2. a) Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$ into PAQ form and hence find the rank (7M) of the matrix. x + y + z = 8,(7M)b) Solve the equations 2x + 3y + 2z = 19 by Gauss – Elimination method. 4x + 2y + 3z = 233. a) Diagonalize the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ if possible. (7M)Nature, index and signature b) Find the of the quadratic form (7M) $3x^2 + 5y^2 + 3z^2 - 2xy + 2xz - 2yz$ by orthogonal reduction.

4. a) Trace the curve
$$x = a \cos t + \frac{a}{2} \log \tan^2 t/2$$
, $y = a \sin t$ (7M)

b) Find the area between the circles $r = a \cos\theta$ and $r = 2a \cos\theta$. (7M)

5. a) Prove that
$$\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(a+bx)^{m+n}} dx = \frac{\beta(m,n)}{(a+b)^{m} a^{n}}$$
(7M)

b) Evaluate
$$\int_{0}^{\infty} e^{-x^6} x^4 dx$$
 (7M)

6. a) Find the directional derivative of the function $e^{2x} \cos yz$ at the origin in the (7M) direction to the tangent to the curve $x = a \sin t$, $y = a \cos t$, z = at at $t = \frac{\pi}{4}$

- b) Show that curl curl $\overline{f} = \nabla \times (\nabla \times \overline{f}) = \nabla (\nabla \cdot \overline{f}) (\nabla \cdot \nabla) \overline{f}$ if $\overline{f}(x, y, z)$ is vector (7M) point function.
- 7. a) Verify Gauss Divergence theorem for $\overline{F} = (x^2 yz)\overline{i} + (y^2 zx)\overline{j} + (z^2 xy)\overline{k}$ taken (7M) over the rectangular parallelepiped $0 \le x \le a$; $0 \le y \le b$; $0 \le z \le c$.
 - b) Evaluate $\iint_{s} (\nabla \times \overline{F}).\overline{n} \, ds$ where $\overline{F} = (x^2 + y 4)\overline{i} + 3xy\overline{j} + (2xy + z^2)\overline{k}$ and s in the (7M) surface of the paraboloid $z = 4 x^2 y^2$ above the xy plane.

|"|"|||"|"||||