

I B. Tech I Semester Supplementary Examinations, May - 2018 MATHEMATICS-I

Time:	3 hours	Max. Marks: 70		
	Note: 1. Question Paper consists of two parts (Part-A and Part	t-B)		
	2. Answer ALL the question in Part-A			
	3. Answer any FOUR Questions from Part-B			
	 <u>PART –A</u>			
1. a)	Solve the DE y(xy + e^x)dx - e^x dy = 0.	(2M)		
b)	Solve the DE $y^{11} - 2y^1 + 10y = 0$, given y (0) = 4, y ¹ (0) = 1.	(2M)		
c)	If $u = \frac{x^2 y^2}{x + y}$ then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$	(2M)		
d)	If f(x, y, z) = e^{xyz} then find $\frac{\partial^3 f}{\partial x \partial y \partial z}$	(2M)		

e) Find $L{\delta(t-3)}$ (2M)

f) Solve
$$z=p(x+1)+q(y+2)$$
. (2M)

g) Classify the nature of the PDE
$$\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} + 4\frac{\partial^2 u}{\partial y^2} = 0$$
 (2M)

PART -B

- 2. a) A body kept in air with temperature $25^{\circ}C$ cools from $140^{\circ}C$ to $80^{\circ}C$ in 20 (7M) minutes. Find when the body cools down to $35^{\circ}C$.
 - b) An R L circuit has an Emf given (in volts) by 10 sin t, a resistance of 90 (7M) ohms, an inductance of 4 henries. Find the current at any time t by assuming zero initial current.

3. a) Solve the DE $(D^2 + 1)y = \cot x$ by the method of variation of parameters (7M)

b) Determine the charge on the capacitor at any time t > 0 in circuit in series having (7M) an emf E(t) = 100 sin 60 t, a resistor of 2 ohms, an inductor of 0.1 henries and capacitor of $\frac{1}{260}$ farads, if the initial current and charge on the capacitor are both zero.

4. a) Evaluate
$$\int_0^\infty \frac{e^{-t} - e^{-2t}}{t} dt$$
 (7M)

b) Using Laplace transform solve $y(t) = sint + \int_0^t u y(t-u) du$ (7M)

5. a) Find the minimum value of
$$x^2 + y^2 + z^2$$
 subject to $ax + by + cz = p$. (7M)

SET - 1

- b) Check whether the following are functionally dependent or not, then find the (7M) relation between $u = \frac{x y}{x + y}, v = \frac{xy}{(x + y)^2}$
- 6. a) Find partial differential equation by eliminating arbitrary function (7M) $f(x^2 + y^2, z xy) = 0$

b) Solve the PDE
$$\frac{p^2}{z^2} = 1 - pq$$
. (7M)

7. a) Solve the PDE
$$(D^2 - 3D - D^{1^2} + 3D^1)z = e^{x-2y}$$
 (7M)

b) Solve the PDE
$$(D-D^{1}-1)(D-D^{1}-2)z = x + e^{3x-y}$$
 (7M)

SET - 1

I B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 MATHEMATICS-I

Tir	ne: 3	3 hours Max. Ma	ırks: 70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is Compulsory 3. Answer any FOUR Questions from Part-B 	
		<u>PART –A</u>	
1.	a)	State Newton's law of cooling.	(2M)
	b)	Test whether the functions $e^x \cos x$ and $e^x \sin x$ are linearly independent or not.	(2M)
	c)	Write the Laplace transform of y", given that $y(0)=1$ and $y'(0)=1$.	(2M)
	d)	Verify whether $u = 2x - y$, $v = x - 2y$ are functionally dependent.	(2M)
	e)	Find the general solution of $3p^2 = q$.	(2M)
	f)	Find the general solution of $(D^2 - 4DD' + 4D'^2) = 0$.	(2M)
	g)	Find Laplace transform of $t \cos at$.	(2M)
		PART -B	
2.	a)	Solve $3e^x \tan y dx + (1 - e^x) \sec^2 y dy = 0$.	(7M)
	b)	Find the equation of the system of orthogonal trajectories of the parabolas	(7M)
		$r = \frac{2a}{1 + \cos \theta}$, where <i>a</i> is the parameter.	
3.	a)	Solve $(D^2 - 3D + 2)y = Cos3x$.	(7M)
	b)	Solve $(D^2 - 5D + 6)y = e^x Sinx$.	(7M)
4.	a)	Find $L[t^3e^{2t}\sin t]$	(7M)
		$y'' - 3y' + 2y = 4t + e^{3t}$ when y (0) = 1 and y'(0) = -1.	(7M)
5.	a)	If $x + y + z = u$, $y + z = uv$, $z = uvw$, then evaluate $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	(7M)
	b)	Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{25} = 1.$	(7M)
6.	a)	Form a partial differential equation by eliminating the arbitrary functions <i>f</i> and <i>g</i> from $z = xf(ax+by) + g(ax+by)$.	(7M)
	h)	$2 + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2}$	(7M)

b) Solve $z^2(p^2+q^2) = x^2 + y^2$. (7M)

R16

- 7. a) Solve $(4D^2 + 12DD' + 9D'^2)z = e^{3x-2y}$. (7M)
 - b) Classify the nature of the partial differential equation (7M) $x^{2} \frac{\partial^{2} u}{\partial x^{2}} + (1 - y^{2}) \frac{\partial^{2} u}{\partial y^{2}} = 0, -\infty < x < \infty, -1 < y < 1.$

|"|'||||"|"|||||

I B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 MATHEMATICS-I

Time: 3 hours

Max. Marks: 70

- Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 - 2. Answering the question in **Part-A** is Compulsory
 - 3. Answer any FOUR Questions from Part-B ~~~~~~~

PART –A

1.	a)	Write the differential equation for L-R circuit, explain the terms involved in it and write the solution of the differential equation.	(2M)	
	b)	Test whether the functions e^x and xe^x are linearly independent or not.		
	c)	Write the second shifting theorem of Laplace transforms.	(2M)	
	d)	If $u = \frac{y}{x}$, $v = xy$, then find $J\left(\frac{u,v}{x,y}\right)$.	(2M)	
	e)	Find the general solution of $p^2+q^2=1$.	(2M)	
	f)	Find the general solution of $(D^2 + DD' - 2D'^2) = 0$.	(2M)	
	g)	Find L [sin 2t sin 3t].	(2M)	
		PART -B		
2.	a)	Solve $\frac{dy}{dx} + \frac{y}{x}\log y = \frac{y}{x^2}(\log y)^2$.	(7M)	
	b)	Find the orthogonal trajectories of the following family of curves: $r^n = a^n \sin n\theta$.	(7M)	
3.	a)	Solve $(D^2 - p^2)y = Sinh px.$		
	b)	Solve $(D^2 - 6D + 13)y = 8e^{3x}Sin2x$.	(7M)	
4.	a)	Find $L[(t+3)^3 e^{2t}]$	(7M)	
	b)	Solve $(D^2 + 2D + 1)y = 3te^{-t}$ given that $y(0) = 4, y'(0) = 2$.	(7M)	
5.	a)	Prove that $u = \frac{x^2 - y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation		
	b)	between them. Find the maximum and minimum values $x + y + z$ subject to $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.	(7M)	
6.	6. a) Form a partial differential equation by eliminating the arbitrary function $z = f(x^2 + y^2 + z^2)$.		(7M)	
	b)	z = i(x + y + z). Solve $x^{2}(z - y) p + y^{2}(x - z)q = z^{2}(y - x).$	(7M)	
7.	a)	Solve $(D^3 + D^2D' - DD' - D'^3)z = 3\sin(x + y)$.	(7M)	
	b)	Classify the nature of the partial differential equation $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + (x^2 + y^2) \frac{\partial^2 u}{\partial y^2} = \sin(x + y).$ 1 of 1	(7M)	

1"1"1111"1""1111

SET - 3

I B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 MATHEMATICS-I

Time: 3 hour	MATHEMATICS-I M	ax. Marks: 70
Time: 5 nou	5 11	ax. What KS. 70
	 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is Compulsory 3. Answer any FOUR Questions from Part-B 	
	<u>PART –A</u>	
write th	the differential equation for C-R circuit, explain the terms involved in the solution of the differential equation. hether the functions $\sin x$ and $x \sin x$ are linearly independent or not.	it and (2M) (2M)
	onvolution theorem in Laplace transforms.	(2M)
d) Find t	he stationary points of $f(x, y) = xy + (x - y)$.	(2M)
e) Find th	the general solution of $pq=1$.	(2M)
f) Find th	the general solution of $(D^2 + 7DD' + 12D'^2) = 0$.	(2M)
g) Find L	aplace transform of $t^2 e^{-2t}$.	(2M)
	PART -B	
2. a) Solve	$(x+2y^3)\frac{dy}{dx} = y.$	(7M)
b) Find t	he orthogonal trajectories of the family $r = 2a(\cos\theta + \sin\theta)$	(7M)
3. a) Solve	$(D^2 - 4D + 3)y = Sin3xCos2x.$	(7M)
b) Solve	$(D^2 - 2D + 1)y = xe^x Sinx$	(7M)
4. a) Find L	$[t^2 \sin at].$	(7M)
b) Solve($D^{2} + 6D + 9)y = \sin t$ given that $y(0) = 1, y'(0) = 0.$	(7M)
5. a) If $u = \frac{y}{2}$	$\frac{yz}{x}$, $\mathbf{v} = \frac{xz}{y}$, $\mathbf{w} = \frac{xy}{z}$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.	(7M)
	the stationary points of $u(x, y) = \sin x \sin y \sin (x + y)$ where $x = \pi, 0 < y < \pi$ and find the maximum u.	(7M)
	a partial differential equation by eliminating the arbitrary function f from $f(x^2 + y^2 + z^2)$.	(7M)
b) Solve($(x^{2} - yz)p + (y^{2} - zx)q = z^{2} - xy.$	(7M)
'. a) Solve	$(D^3 - 4D^2D' + 4DD'^2)z = 6\sin(3x + 6y).$	(7M)
b) Classif	Ty the nature of the partial differential equation $\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0.$	(7M)

|"|'||||"|"||||

SET - 4

I B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov - 2018 MATHEMATICS-I

Note: 1. Question Paper consists of two parts (Part-A and Part-B)2. Answering the question in Part-A is Compulsory3. Answer any FOUR Questions from Part-BPART -A 1. a) State law of natural growth or decay and write the corresponding differential (2N equations and their solutions.b) Test whether the functions e^{2x} and e^{5x} are linearly independent or not.(2N) </th <th>Time</th> <th>3 hours MATHEMATICS-I Max. Ma</th> <th>arks: 70</th>	Time	3 hours MATHEMATICS-I Max. Ma	arks: 70
2. Answer any FOUR Questions from Part-B 3. Answer any FOUR Questions from Part-B PART -A 1. a) State law of natural growth or decay and write the corresponding differential (2M equations and their solutions. b) Test whether the functions e^{2x} and e^{5x} are linearly independent or not. (2M c) Find the Laplace transform of Heaviside's unit function. (2M d) Expand $e^x \cos y$ near $(1, \frac{\lambda}{4})$ (2M f) Find the general solution of $p+q=1$. (2M f) Find the general solution of $(D^2 - 4DD' + 4D'^2) = 0$. (2M g) If $L\left(\frac{\sin t}{t}\right) = \tan^{-1} \frac{1}{s}$, find $L\left(\frac{\sin at}{t}\right)$. (2M Find the orthogonal trajectories of $r^2 = a \sin 2\theta$. (7M 3. a) Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx$. (7M b) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$. (7M 4. a) Find $L\left[e^{-3t} \int_{0}^{t} \frac{1 - \cos t}{t^2} dt\right]$ (7M 5. a) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. If dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (7M 6. a) Form a partial differential equation by eliminating a and b from (7M log(az-1) = x+ay+b.	Time.		arks. 70
1. a) State law of natural growth or decay and write the corresponding differential (2M equations and their solutions. b) Test whether the functions e^{2x} and e^{5x} are linearly independent or not. (2M c) Find the Laplace transform of Heaviside's unit function. (2M d) Expand $e^x \cos y$ near $(1, \frac{\lambda}{4})$ (2M e) Find the general solution of $p+q=1$. (2M f) Find the general solution of $(D^2 - 4DD' + 4D'^2) = 0$. (2M g) If $L\left(\frac{\sin t}{t}\right) = \tan^{-1}\frac{1}{s}$, find $L\left(\frac{\sin at}{t}\right)$. (2M b) Find the orthogonal trajectories of $r^2 = a\sin 2\theta$. (7M b) Find the orthogonal trajectories of $r^2 = a\sin 2\theta$. (7M b) Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx$. (7M b) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$. (7M c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. (7M c) The dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (7M c) a) Form a partial differential equation by eliminating <i>a</i> and <i>b</i> from (7M log($az - 1$) = $x + ay + b$.		2. Answering the question in Part-A is Compulsory	
equations and their solutions. b) Test whether the functions e^{2x} and e^{5x} are linearly independent or not. (2N c) Find the Laplace transform of Heaviside's unit function. (2N d) Expand $e^x \cos y$ near $(1, \frac{\lambda}{4})$ (2N e) Find the general solution of $p+q=1$. (2N f) Find the general solution of $(D^2 - 4DD' + 4D'^2) = 0$. (2N g) If $L\left(\frac{\sin t}{t}\right) = \tan^{-1}\frac{1}{s}$, find $L\left(\frac{\sin at}{t}\right)$. (2N Example 2. a) Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2\cosh^2 x \sinh x$. (7N b) Find the orthogonal trajectories of $r^2 = a \sin 2\theta$. (7N b) Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx$. (7N b) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$. (7N 4. a) Find $L\left[e^{-3t}\int_{0}^{t}\frac{1-\cos t}{t^2}dt\right]$ (7N 5. a) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. If dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (7N 6. a) Form a partial differential equation by eliminating a and b from (7N $\log(az-1) = x + ay + b$.		 <u>PART –A</u>	
c) Find the Laplace transform of Heaviside's unit function. (2N d) Expand $e^x \cos y$ near $(1, \frac{\lambda}{4})$ (2N e) Find the general solution of $p+q=1$. (2N f) Find the general solution of $(D^2 - 4DD' + 4D'^2) = 0$. (2N g) If $L\left(\frac{\sin t}{t}\right) = \tan^{-1}\frac{1}{s}$, find $L\left(\frac{\sin at}{t}\right)$. (2N PART -B 2. a) Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2\cosh^2 x \sinh x$. (7N b) Find the orthogonal trajectories of $r^2 = a \sin 2\theta$. (7N b) Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx$. (7N b) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$. (7N c) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$. (7N c) Solve $(y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. (7N b) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. (7N c) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. f dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (7N 6. a) Form a partial differential equation by eliminating a and b from (7N log($az - 1$) = $x + ay + b$.	l. a)		(2M)
d) Expand $e^x \cos y$ near $(1, \frac{\lambda}{4})$ (2N e) Find the general solution of $p+q=1$. (2N f) Find the general solution of $(D^2 - 4DD' + 4D'^2) = 0$. (2N g) If $L\left(\frac{\sin t}{t}\right) = \tan^{-1}\frac{1}{s}$, find $L\left(\frac{\sin at}{t}\right)$. (2N PART -B 2. a) Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2\cosh^2 x \sinh x$. (7N b) Find the orthogonal trajectories of $r^2 = a \sin 2\theta$. (7N b) Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx$. (7N b) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$. (7N 4. a) Find $L\left[e^{-3t}\int_{0}^{t}\frac{1-\cos t}{t^2}dt\right]$ (7N 5. a) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. ff dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (7N 6. a) Form a partial differential equation by eliminating a and b from (7N $\log(az-1) = x + ay + b$.	b)	Test whether the functions e^{2x} and e^{5x} are linearly independent or not.	(2M)
Expand $e^{-1} \cos y$ near $(1, \frac{1}{4})$ e) Find the general solution of $p+q=1$. (2N f) Find the general solution of $(D^2 - 4DD^1 + 4D^{12}) = 0$. (2N g) If $L\left(\frac{\sin t}{t}\right) = \tan^{-1}\frac{1}{s}$, find $L\left(\frac{\sin at}{t}\right)$. (2N PART -B 2. a) Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2\cosh^2 x \sinh x$. (7N b) Find the orthogonal trajectories of $r^2 = a \sin 2\theta$. (7N b) Find the orthogonal trajectories of $r^2 = a \sin 2\theta$. (7N b) Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx$. (7N b) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$. (7N c) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$. (7N c) Solve $(D^2 + 3y' - y) = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. (7N find $L\left[e^{-3t}\int_{0}^{t}\frac{1-\cos t}{t^2}dt\right]$ (7N b) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. (7N f) Determine whether the functions $U = \frac{x}{y-z}, V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. If dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (7N 6. a) Form a partial differential equation by eliminating a and b from (7N $\log(az-1) = x + ay + b$.	c)	Find the Laplace transform of Heaviside's unit function.	(2M)
f) Find the general solution of $(D^2 - 4DD' + 4D'^2) = 0.$ (2N g) If $L\left(\frac{\sin t}{t}\right) = \tan^{-1}\frac{1}{s}$, find $L\left(\frac{\sin at}{t}\right).$ (2N PART -B 2. a) Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2\cosh^2 x \sinh x.$ (7N b) Find the orthogonal trajectories of $r^2 = a \sin 2\theta.$ (7N c) Find the orthogonal trajectories of $r^2 = a \sin 2\theta.$ (7N b) Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx.$ (7N c) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}.$ (7N c) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e'$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e'$ given $t = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e'$ given $t = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e'$ given $t = 1, y' = 0, y'' = -2$ at $t = 0.$	d)	Expand $e^x \cos y$ near $(1, \frac{\lambda}{4})$	(2M)
g) If $L\left(\frac{\sin t}{t}\right) = \tan^{-1}\frac{1}{s}$, find $L\left(\frac{\sin at}{t}\right)$. PART -B 2. a) Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2\cosh^2 x \sinh x$. b) Find the orthogonal trajectories of $r^2 = a \sin 2\theta$. 3. a) Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx$. b) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$. 4. a) Find $L\left[e^{-3t}\int_{0}^{t}\frac{1-\cos t}{t^2}dt\right]$ c) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. 5. a) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. If dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. 6. a) Form a partial differential equation by eliminating a and b from (7N $\log(az-1) = x + ay + b$.	e)	Find the general solution of $p+q=1$.	(2M)
PART -B PART -B 2. a) Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2\cosh^2 x \sinh x.$ (7N b) Find the orthogonal trajectories of $r^2 = a \sin 2\theta.$ (7N c) Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx.$ (7N c) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}.$ (7N c) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given $t = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given $t = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given $t = 1, y' = 0, y'' = -2$ at $t = 0.$ (7N c) Solve $y'' - 3y'' + 3y' - y = t^2e^t$ given $t = 1, y' = 0, y'' = -2$	f)	Find the general solution of $(D^2 - 4DD' + 4D'^2) = 0$.	(2M)
2. a) Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2\cosh^2 x \sinh x$. b) Find the orthogonal trajectories of $r^2 = a \sin 2\theta$. 3. a) Solve $(D^2 + 3D + 2)y = e^{-x} + \cos x$. b) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}$. 4. a) Find $L\left[e^{-3t}\int_{0}^{t} \frac{1 - \cos t}{t^2} dt\right]$ b) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. 5. a) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. If dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (7M) Solve $(az - 1) = x + ay + b$.	g)	If $L\left(\frac{\sin t}{t}\right) = \tan^{-1}\frac{1}{s}$, find $L\left(\frac{\sin at}{t}\right)$.	(2M)
Solve $\cosh x \frac{-y}{dx} + y \sinh x = 2\cosh^2 x \sinh x$. b) Find the orthogonal trajectories of $r^2 = a \sin 2\theta$. c) $(7N)$ c) $\cosh (D^2 + 3D + 2)y = e^{-x} + Cosx$. c) $(7N)$ c) $Solve (D^2 + 2D - 3)y = x^2 e^{-3x}$. c) $(7N)$ c) $Solve (D^2 + 2D - 3)y = x^2 e^{-3x}$. c) $(7N)$ c) $Solve (D^2 + 2D - 3)y = x^2 e^{-3x}$. c) $(7N)$ c) $Solve y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y'' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y'' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $(7N)$ c) $Solve y'' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $Solve y'' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $Solve y'' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $Solve y'' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $Solve y'' = -3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. c) $Solve y'$		PART -B	
3. a) Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx.$ (7M b) Solve $(D^2 + 2D - 3)y = x^2e^{-3x}.$ (7M 4. a) Find $L\left[e^{-3t}\int_{0}^{t}\frac{1-\cos t}{t^2}dt\right]$ (7M b) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0.$ (7M 5. a) Determine whether the functions $U = \frac{x}{y-z}, V = \frac{y}{z-x}, W = \frac{z}{x-y}$ are dependent. If dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (7M 6. a) Form a partial differential equation by eliminating <i>a</i> and <i>b</i> from (7M $\log(az-1) = x + ay + b$.	2. a)	Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2 \cosh^2 x \sinh x$.	(7M)
b) Solve $(D^2 + 2D - 3)y = x^2 e^{-3x}$. (7M 4. a) Find $L\left[e^{-3t}\int_{0}^{t}\frac{1-\cos t}{t^2}dt\right]$ (7M b) Solve $y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. (7M 5. a) Determine whether the functions $U = \frac{x}{y-z}, V = \frac{y}{z-x}, W = \frac{z}{x-y}$ are dependent. (7M 1f dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (7M 6. a) Form a partial differential equation by eliminating <i>a</i> and <i>b</i> from (7M $\log(az-1) = x + ay + b$.	b)	Find the orthogonal trajectories of $r^2 = a \sin 2\theta$.	(7M)
4. a) Find $L\left[e^{-3t}\int_{0}^{t}\frac{1-\cos t}{t^{2}}dt\right]$ (7M b) Solve $y'''-3y''+3y'-y=t^{2}e^{t}$ given that $y=1, y'=0, y''=-2$ at $t=0$. (7M 5. a) Determine whether the functions $U=\frac{x}{y-z}, V=\frac{y}{z-x}, W=\frac{z}{x-y}$ are dependent. (7M If dependent find the relationship between them. b) Examine the function for extreme values $f(x,y)=x^{4}+y^{4}-2x^{2}+4xy-2y^{2}$. (7M 6. a) Form a partial differential equation by eliminating <i>a</i> and <i>b</i> from (7M $\log(az-1)=x+ay+b$.	3. a)	Solve $(D^2 + 3D + 2)y = e^{-x} + Cosx.$	(7M)
Find $L\left[e^{-3t}\int_{0}^{1-\cos t} dt\right]$ b) Solve $y''' - 3y'' + 3y' - y = t^2e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$. (7N 5. a) Determine whether the functions $U = \frac{x}{y-z}, V = \frac{y}{z-x}, W = \frac{z}{x-y}$ are dependent. If dependent find the relationship between them. b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (7N 6. a) Form a partial differential equation by eliminating <i>a</i> and <i>b</i> from (7N $\log(az-1) = x + ay + b$.	b)	Solve $(D^2 + 2D - 3)y = x^2 e^{-3x}$.	(7M)
5. a) Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent. (7M) If dependent find the relationship between them. (b) Examine the function for extreme values $f(x, y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$. (c) (a) Form a partial differential equation by eliminating <i>a</i> and <i>b</i> from (c) $V = \frac{y}{z-x}$.	1. a)	Find $L\left[e^{-3t}\int_{0}^{t}\frac{1-\cos t}{t^{2}}dt\right]$	(7M)
 b) Examine the functions U = y/(y-z), V = y/(z-x), W = y/(x-y) are dependent. b) Examine the function for extreme values f(x, y) = x⁴ + y⁴ - 2x² + 4xy - 2y². (7N) 6. a) Form a partial differential equation by eliminating a and b from (7N) log(az-1) = x + ay + b. 	b)	Solve $y''' - 3y'' + 3y' - y = t^2 e^t$ given that $y = 1, y' = 0, y'' = -2$ at $t = 0$.	(7M)
 b) Examine the function for extreme values f(x, y) = x⁴ + y⁴ - 2x² + 4xy - 2y². (7M) 6. a) Form a partial differential equation by eliminating a and b from (7M) log(az-1) = x + ay + b. 	5. a)	Determine whether the functions $U = \frac{x}{y-z}$, $V = \frac{y}{z-x}$, $W = \frac{z}{x-y}$ are dependent.	(7M)
6. a) Form a partial differential equation by eliminating <i>a</i> and <i>b</i> from (7M $log(az-1) = x + ay + b$.	b)		(7M)
$\log(az-1) = x + ay + b.$			
b) $a_1 = (a_2) (a_3) ($	J. a)		(7141)
b) Solve $px(z-2y^2) = (z-qy)(z-y^2-2x^3)$. (71)	b)	Solve $px(z-2y^2) = (z-qy)(z-y^2-2x^3)$.	(7M)
7. a) Solve $(D^2 - 4DD' + 4D'^2)z = e^{2x+y}$. (7N)	7. a)	Solve $(D^2 - 4DD' + 4D'^2)z = e^{2x+y}$.	(7M)
b) Classify the nature of the partial differential equation (7M) $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 4 \frac{\partial^2 u}{\partial y^2} - \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0.$	b)		(7M)

1''1''1111''1'''111''1

I B. Tech I Semester Supplementary Examinations, May - 2018 MATHEMATICS-I

Time:	3 hours	Max. Marks: 70		
	Note: 1. Question Paper consists of two parts (Part-A and Part	t-B)		
	2. Answer ALL the question in Part-A			
	3. Answer any FOUR Questions from Part-B			
	 <u>PART –A</u>			
1. a)	Solve the DE y($xy + e^x$) $dx - e^x dy = 0$.	(2M)		
b)	Solve the DE $y^{11} - 2y^1 + 10y = 0$, given y (0) = 4, y ¹ (0) = 1.	(2M)		
c)	If $u = \frac{x^2 y^2}{x + y}$ then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$	(2M)		
d)	If f(x, y, z) = e^{xyz} then find $\frac{\partial^3 f}{\partial x \partial y \partial z}$	(2M)		

e) Find $L{\delta(t-3)}$ (2M)

f) Solve
$$z=p(x+1)+q(y+2)$$
. (2M)

g) Classify the nature of the PDE
$$\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} + 4\frac{\partial^2 u}{\partial y^2} = 0$$
 (2M)

PART -B

- 2. a) A body kept in air with temperature $25^{\circ}C$ cools from $140^{\circ}C$ to $80^{\circ}C$ in 20 (7M) minutes. Find when the body cools down to $35^{\circ}C$.
 - b) An R L circuit has an Emf given (in volts) by 10 sin t, a resistance of 90 (7M) ohms, an inductance of 4 henries. Find the current at any time t by assuming zero initial current.

3. a) Solve the DE $(D^2 + 1)y = \cot x$ by the method of variation of parameters (7M)

b) Determine the charge on the capacitor at any time t > 0 in circuit in series having (7M) an emf E(t) = 100 sin 60 t, a resistor of 2 ohms, an inductor of 0.1 henries and capacitor of $\frac{1}{260}$ farads, if the initial current and charge on the capacitor are both zero.

4. a) Evaluate
$$\int_0^\infty \frac{e^{-t} - e^{-2t}}{t} dt$$
 (7M)

b) Using Laplace transform solve $y(t) = sint + \int_0^t u y(t-u) du$ (7M)

5. a) Find the minimum value of
$$x^2 + y^2 + z^2$$
 subject to $ax + by + cz = p$. (7M)

SET - 1

- b) Check whether the following are functionally dependent or not, then find the (7M) relation between $u = \frac{x y}{x + y}, v = \frac{xy}{(x + y)^2}$
- 6. a) Find partial differential equation by eliminating arbitrary function (7M) $f(x^2 + y^2, z xy) = 0$

b) Solve the PDE
$$\frac{p^2}{z^2} = 1 - pq$$
. (7M)

7. a) Solve the PDE
$$(D^2 - 3D - D^{1^2} + 3D^1)z = e^{x-2y}$$
 (7M)

b) Solve the PDE
$$(D-D^{1}-1)(D-D^{1}-2)z = x + e^{3x-y}$$
 (7M)